
Sol-Assignment 3 - Intégration et dérivation numérique

May 7, 2025

1 Assignment 3: Formule de quadrature d’ordres elévés
On considère une fonction 𝑓 ∶ [𝑎, 𝑏] → ℝ dans 𝐶0([𝑎, 𝑏]). On est intéressé à approcher l’intégrale
𝐼(𝑓) = ∫𝑏

𝑎 𝑓(𝑥) 𝑑𝑥 en utilisant des formules de quadrature d’ordres elévés.

[1]: import matplotlib.pyplot as plt
import numpy as np
from scipy.special import erf, expi
from scipy.integrate import quad

1.1 Partie 1
Dans un premier temps, nous essayons d’approximer l’intégrale de 𝑓 en exploitant des règles de
quadrature simples (c-à-d non composites), de la forme

𝐼(𝑓) = ∫
𝑏

𝑎
𝑓(𝑥) 𝑑𝑥 ≈ 𝐼𝑛(𝑓) =

𝑛
∑
𝑖=1

𝑤𝑖 𝑓(𝑥𝑖)

Ces régles ont été construites à partir de l’interpolation polynomiale d’ordre élevé sur des nœuds
équidistribués, c-à-d

𝐼𝑛(𝑓) = ∫
𝑏

𝑎
Π𝑛(𝑓)(𝑥) 𝑑𝑥 ,

où Π𝑛(𝑓) est l’interpolée de Lagrange de 𝑓 sur des noeuds équidistribués.

Plus précisément, nous considérons : * nœuds : équidistribués dans [𝑎, 𝑏], donc 𝑥𝑖 = 𝑎+𝑖 (𝑏 − 𝑎
𝑛 − 1)

* poids : calculés à partir des fonctions de base de Lagrange définies sur les nœuds afin de garantir
le degré d’exactitude maximale, donc 𝑤𝑖 = ∫𝑏

𝑎 𝜑𝑖(𝑥) 𝑑𝑥.
On considère la fonction

𝜅(𝑥) = 1 − 𝜅1(𝜅2(𝑥)) avec 𝜅1(𝑦) = 1
1 − 2𝑦 + 4𝑦2 et 𝜅2(𝑥) = 𝑥2 − 4

4 .

Approximer l’intégrale de 𝜅 dans [−3, 3] pour 𝑛 = 2𝑗 + 1 noeuds, avec 𝑗 = 1, 2, ⋯ , 5, et comparer
le résultat avec une estimation précise de l’intégrale (donnée).

Discuter les résultats obtenus. En particulier, est-ce que l’estimation de l’integrale s’améliore
lorsqu’on considère plus de noeuds de quadrature ? Pourquoi ? (Réponse 1)

1

[2]: def Lagrange(n):
"""
Compute Lagrange quadrature nodes and weights on equidistant nodes in␣

↪[-1,1].

Inputs: [n]
n : Number of nodes.

Outputs: [x, w]
x : Equidistant nodes in [-1,1].
w : Quadrature weights.
"""

x = np.linspace(-1, 1, n)
w = np.zeros(n)

for i in range(n):
Define Lagrange basis function
def lagrange_basis(_x):

res = 1
for j in range(n):

if i != j:
res *= (_x - x[j]) / (x[i] - x[j])

return res

Integrate the Lagrange polynomial over [-1,1]
w[i], _ = quad(lagrange_basis, -1, 1)

return x, w

[3]: k2 = lambda x : (x**2 - 4) / 4
k1 = lambda y : 1 / (1 - 2*y + 4*y**2)
k = lambda x : 1 - k1(k2(x))
a, b = -3, 3

IexactK, _ = quad(k, a, b)
print(f'A precise estimate of the value of the integral is {IexactK:.7f}')

x = np.linspace(a, b, 1000)
y = k(x)

plt.plot(x, y, 'b')
plt.xlabel('x'); plt.ylabel('$f(x)$')
plt.title(r'Plot of $k(x)$')
plt.xlim([a,b])
plt.grid()
plt.show()

2

A precise estimate of the value of the integral is 3.1282214

[4]: n_range = [2**k + 1 for k in range(1,6)]

for n in n_range :
nodes, weights = Lagrange(n)
nodes = a + (b-a) / 2 * (nodes + 1)
weights *= (b-a) / 2

intQuad = sum(weights * k(nodes))
errQuad = np.abs(intQuad - IexactK)

print(f"n ={n:3d} - "
f"Approximated integral: {intQuad:2.4f} - "
f"Error: {errQuad:.2e}")

n = 3 - Approximated integral: 5.0075 - Error: 1.88e+00
n = 5 - Approximated integral: 4.0734 - Error: 9.45e-01
n = 9 - Approximated integral: 2.0960 - Error: 1.03e+00
n = 17 - Approximated integral: 3.3721 - Error: 2.44e-01

3

n = 33 - Approximated integral: -2.8408 - Error: 5.97e+00

1.1.1 Commentaire

Réponse 1 On remarque que l’approximation de l’integrale n’est jamais bonne et devient pire
lorsque le nombre de noeuds 𝑛 augmente. En genérale, ces grandes erreurs sont liées au fait que le
polynôme interpolatoire Π𝑛(𝑓) n’est jamais précis, ce qui dépend du phenomène de Runge pour des
valeurs de 𝑛 suffisamment grandes. En fait, en dessinant le polynôme interpolatoire de Lagrange, on
pourrait observer la présence d’oscillations de plus en plus évidentes aux éxtremités de l’intervalle
lorsque 𝑛 croît.

1.2 Partie 2
Maintenant, on considére des règles de quadrature composites, en subdivisant l’intervalle
d’intégration [𝑎, 𝑏] en 𝑁 sous-intervalles plus petits.

Écrivez une fonction qui implemente une formule de quadrature composite, étant donnée les noeuds
(dans l’intervalle de reference [−1, 1]), les poids, les extrèmes de l’intervalle d’integration [𝑎, 𝑏] et le
nombre de sous-intervalles 𝑁 .

La fonction doit avoir la structure suivante:

def QuadratureComposite(nodes, weights, a, b, N, f) :
Function that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, weights, a, b, N, f]
nodes : quadrature nodes (in [-1,1])
weights : quadrature weights
[a,b] : integration interval
N : number of sub-intervals
f : function to integrate
#
Outputs : [Lh]
Lh : integral of f in [a,b], approximated with the prescribed composite quadrature rule

[5]: def QuadratureComposite(nodes, weights, a, b, N, f) :
"""Function that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, weights, a, b, N, f]
nodes : quadrature nodes (in [-1,1])
weights : quadrature weights
[a,b] : integration interval
N : number of sub-intervals
f : function to integrate

Outputs : [Lh]

4

Lh : integral of f in [a,b], approximated with the prescribed␣
↪composite quadrature rule

"""

M = len(nodes)
if len(nodes) != len(weights):

raise ValueError(f"Invalid value of M: {M}")

size of the subintervals
H = (b - a) / N
points defining intervals
x = np.linspace(a, b, N+1)

Lh = 0
z = np.zeros(M)

for k in range(N) :
Quadrature points in the sub-interval
z = (x[k] + x[k+1])/2 + nodes*(x[k+1] - x[k])/2

local quadrature on the subinterval
Jgk = sum(weights * f(z))

Lh += Jgk

scaling
Lh *= H/2

approximate integral
return Lh

1.2.1 Formules de quadrature de Gauss-Legendre-Lobatto.

Dans ce test, on prend les nœuds et les poids de quadrature de Gauss-Legendre-Lobatto (GLL),
qui conviennent à l’intégration numerique d’ordre élevé.

La fonction GaussLegendreLobatto ci-dessous retourne les 𝑀 noeuds (dans l’intervalle de reférence
[−1, 1]) et les 𝑀 poids de quadrature pour les formules de GLL.

Remarque: seulement les cas 𝑀 = 2, 3, 4, 5 sont considerés.

M noeuds (dans [1,1])
poids (dans le même ordre

que les noeuds)
2 −1, 1 1, 1
3 −1, 0, 1 1

3, 4
3, 1

3
4 −1, −

√
5

5 ,
√

5
5 , 1 1

6, 5
6, 5

6, 1
6

5

M noeuds (dans [1,1])
poids (dans le même ordre

que les noeuds)

5 −1, −
√

21
7 , 0,

√
21
7 , 1 1

10, 49
90, 32

45, 49
90, 1

10

[6]: def GaussLegendreLobatto(M):
"""Returns the GaussLegendreLobatto (GLL) quadrature nodes and weights for␣

↪the given value of M.

Inputs : [M]
M : number of quadrature nodes and weights

Outputs :
nq : quadrature nodes (in [-1,1])
wq : quadrature weights
"""

if M == 2:
nq = np.array([-1.0, 1.0])
wq = np.ones(M)

elif M == 3:
nq = np.array([-1.0, 0.0, 1.0])
wq = np.array([1/3, 4/3, 1/3])

elif M == 4:
nq = np.array([-1.0, -np.sqrt(5)/5, np.sqrt(5)/5, 1.0])
wq = np.array([1/6, 5/6, 5/6, 1/6])

elif M == 5:
nq = np.array([-1.0, -np.sqrt(21)/7, 0.0, np.sqrt(21)/7, 1.0])
wq = np.array([1/10, 49/90, 32/45, 49/90, 1/10])

else:
raise ValueError(f"Invalid value of M: {M}")

return nq, wq

1.3 Partie 3
Éstimez numériquement le degré d’exactitude des formules de quadrature simples (i.e. pas compos-
ite, 𝑁 = 1 sous-intervalles) de Gauss-Legendre-Lobatto (GLL) avec 𝑀 = 4. Est-ce que les résultats
obtenus sont en accord avec la théorie? (Réponse 2)

[7]: # Checking quadrature fonction
a, b = 1, 4

with lambda functions, it is possible to determine a parameter (here d)
at a later moment
monomial = lambda x : x**d

6

[8]: # recording for which degrees the integral is exact (up to epsilon)
exactDegree = -1
epsilon = 1e-12

M = 4
nodes, weights = GaussLegendreLobatto(M)

N = 1
for d in range(10) :

intQuad = QuadratureComposite(nodes, weights, a, b, N, monomial)
intExact = (4**(d+1) - 1) / (d+1)
print(f'Quadrature on monomial x^{d} : {intQuad:.4f} - {intExact:.4f} =␣

↪{intQuad-intExact:.6e}')

if np.abs(intQuad-intExact) < epsilon :
exactDegree = d

print(f'\nGLL composite quadrature with N = {N} and M = {M} is exact up to␣
↪degree {exactDegree}')

Quadrature on monomial x^0 : 3.0000 - 3.0000 = 0.000000e+00
Quadrature on monomial x^1 : 7.5000 - 7.5000 = 1.776357e-15
Quadrature on monomial x^2 : 21.0000 - 21.0000 = 0.000000e+00
Quadrature on monomial x^3 : 63.7500 - 63.7500 = 0.000000e+00
Quadrature on monomial x^4 : 204.6000 - 204.6000 = 2.842171e-14
Quadrature on monomial x^5 : 682.5000 - 682.5000 = 2.273737e-13
Quadrature on monomial x^6 : 2341.4700 - 2340.4286 = 1.041429e+00
Quadrature on monomial x^7 : 8210.1000 - 8191.8750 = 1.822500e+01
Quadrature on monomial x^8 : 29313.6240 - 29127.0000 = 1.866240e+02
Quadrature on monomial x^9 : 106322.7900 - 104857.5000 = 1.465290e+03

GLL composite quadrature with N = 1 and M = 4 is exact up to degree 5

1.3.1 Commentaire

Réponse 1 Le degré d’exactitude des formules de quadrature de Gauss-Legendre-Lobatto (GLL)
est 2𝑀 −3. Dans ce cas, étant 𝑀 = 4, on s’attend donc un degré d’exactitude égal à 5. Ce résultat
est en effet confirmé par notre test numerique.

1.4 Partie 4

Considerons maintenant la fonction 𝑓(𝑥) = 𝑒−𝑥2 + 𝑒𝑥

𝑥 .

Approximer 𝐼(𝑓) = ∫
𝑒

1/𝑒
𝑓(𝑥) 𝑑𝑥 en utilisant les formules de quadrature de GLL composites avec

𝑀 = 2, 3, 4, 5 et 𝑁 = 2𝑗 sous-intervalles pour 𝑗 = 3, 4, 5, 6.
Ensuite calculer les erreurs 𝐸𝑀,𝑁

𝐺𝐿𝐿 (𝑓) ∶= |𝐼(𝑓) − 𝐼𝑀,𝑁
𝐺𝐿𝐿 (𝑓)|, où 𝐼𝑀,𝑁

𝐺𝐿𝐿 (𝑓) represente l’approximation

7

de l’integral de 𝑓 obtenue avec la formule de quadrature de GLL composite, avec 𝑁 sous-intervalles
et de degré 𝑀 .

Dessiner les erreurs en fonction de 𝐻 sur une échelle logarithmique sur les deux axes. Que peut-on
deduire par rapport aux ordres de convergence ? Sont-ils en accord avec la théorie? Motivez votre
réponse (Réponse 3).

[9]: f = lambda x : np.exp(-x**2) + np.exp(x) / x

a, b = 1 / np.exp(1), np.exp(1)
IexactF = (erf(b) - erf(a)) * np.sqrt(np.pi) / 2 + (expi(b) - expi(a))
print(f'The exact value of the integral of f is {IexactF:.7f}')

x = np.linspace(a,b,1000)
y = f(x)

plt.plot(x, y, 'b')
plt.xlabel('x'); plt.ylabel('$f(x)$')
plt.title(r'Plot of $f(x) = e^{-x^2} + \dfrac{e^x}{x}$')
plt.ylim([0, 1.1*np.max(y)])
plt.xlim([a,b])
plt.grid()
plt.show()

The exact value of the integral of f is 8.7639675

8

[10]: Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2**k for k in range(4, 9)])

for M in Mrange :
nodes, weights = GaussLegendreLobatto(M)
errQuad = []

for N in Nrange :
intQuad = QuadratureComposite(nodes, weights, a, b, N, f)
errQuad.append(np.abs(intQuad - IexactF))

H = (b-a)/Nrange
slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-1])␣

↪- np.log(H[0]))

print(f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.
↪2f}')

plt.figure(figsize=(6,3))

9

plt.loglog(H, errQuad, 'b-o')

plt.loglog(H, H**(2*M-2) * (errQuad[0]/H[0]**(2*M-2))*2, 'k:')
plt.loglog(H, H**(2*M-1) * (errQuad[0]/H[0]**(2*M-1)), 'r:')

plt.title(f"Errors for M={M}", fontweight='bold')
plt.legend(['GLL', f'H^{2*M-2}', f'H^{2*M-1}'])
plt.xlabel(r'H'); plt.ylabel('error')

xticks = [4*10**(-2), 6*10**(-2), 8*10**(-2), 10**(-1), 2*10**(-1)]
plt.xticks(xticks)
plt.grid(which='major', linestyle='--')

Pour M = 2, La convergence numérique est environ de 2.00
Pour M = 3, La convergence numérique est environ de 3.97
Pour M = 4, La convergence numérique est environ de 5.96
Pour M = 5, La convergence numérique est environ de 4.71

10

11

1.4.1 Commentaire

Réponse 3 L’ordre de convergence des formules de quadrature de Gauss-Legendre-Lobatto (GLL)
par rapport à 𝐻 est 2𝑀 −2. Dans ces cas, on s’attend donc * une convergence d’ordre 2 par rapport
à 𝐻 si 𝑀 = 2; * une convergence d’ordre 4 par rapport à 𝐻 si 𝑀 = 3; * une convergence d’ordre
6 par rapport à 𝐻 si 𝑀 = 4; * une convergence d’ordre 8 par rapport à 𝐻 si 𝑀 = 5;
Nos attentes sont effectivement satisfaites par les résultats numeriques. D’abord, cela peut être
déduit en regardant les graphiques ci-dessus, où, pour toute valeur de 𝑀 , la courbe d’erreur de GLL
est (presque) parallèle à la droite d’erreur avec pente (en echelle logarithmique) égal à 2𝑀 − 2. De
plus, on peut estimer l’ordre de convergence numerique en calculant la pente des courbes d’erreur
en fonction de 𝐻. On obtient les valeurs suivantes: * 2.00 (≈ 2) pour 𝑀 = 2; * 3.97 (≈ 4) pour
𝑀 = 3; * 5.96 (≈ 6) pour 𝑀 = 4; * 7.79 (≈ 8) pour 𝑀 = 5.
Ces valeurs sont bien en accord avec la théorie.

Remarque: Pour le cas 𝑀 = 5, on ne considère que le premiers deux points pour determiner l’ordre,
car pour des valeurs trop petites de 𝑛 l’erreur devient approximativement constante et ≈ 10−15.

1.5 Partie 5
Répéter la Partie 4, mais en considerant la fonction 𝑔𝐾 ∶ [−1, 1] → ℝ definie comme suit

𝑔𝐾(𝑥) =
⎧{
⎨{⎩

𝑒𝑥 if 𝑥 ≤ −𝐾
𝑐0𝑥2 + 𝑐1|𝑥| if − 𝐾 < 𝑥 ≤ 𝐾
𝑒−𝑥 if 𝑥 > 𝐾

(1)

avec 𝐾 = 0.70, 𝑐0 = −𝐾+1
𝐾2 𝑒−𝐾, 𝑐1 = 𝑒−𝐾 (1 + 2

𝐾) et en prenant 𝑁 = 2𝑘, 𝑘 = 3, 4, 5, 6 sous-
intervalles.

12

On a que l’integrale exacte de 𝑔𝐾 est égale à

𝐼𝑔𝐾
= ∫

1

−1
𝑔𝐾(𝑥) 𝑑𝑥 = 2𝑒−𝐾 − 2

𝑒 + 2
3𝑐0𝐾3 + 𝑏𝐾2 .

Quels sont les ordres de convergence numérique obtenus? Sont-ils égaux à ceux obtenus avec la
fonction 𝑓? Pourquoi?(Réponse 4)

[11]: a,b = -1, 1
K = 0.70
c0 = -(K+1)/K**2 * np.exp(-K)
c1 = (1+2/K) * np.exp(-K)

g = lambda x : (np.exp(x)*(x<=-K) +
(c0 * x**2 + c1 * np.abs(x))*(x>-K)*(x<=K) +
np.exp(-x)*(x>K))

IexactG = (2*np.exp(-K) - 2*np.exp(-1) + 2*c0/3*K**3 + c1*K**2) / 1 # exact␣
↪value of the integral of g

print(f'The exact value of the integral of g is {IexactG:.7f}')

x = np.linspace(a,b,1001)
y = g(x)

plt.plot(x, y, 'b')
plt.xlabel(r'x'); plt.ylabel(r'$g(x)$')
plt.ylim([0, 1.1*np.max(y)])
plt.xlim([a,b])
plt.grid()
plt.show()

The exact value of the integral of g is 0.8020003

13

[12]: Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2**k for k in range(4,9)])

for M in Mrange :
nodes, weights = GaussLegendreLobatto(M)
errQuad = []

for N in Nrange:
intQuad = QuadratureComposite(nodes, weights, a, b, N, g)
errQuad.append(np.abs(intQuad - IexactG))

H = (b-a)/Nrange
slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-1])␣

↪- np.log(H[0]))

print(f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.
↪2f}')

plt.figure(figsize=(5,3))

plt.loglog(H, errQuad, 'b-o')

14

plt.loglog(H, H**2 * (errQuad[0]/H[0]**2)*2, 'k:')
plt.loglog(H, H**3 * (errQuad[0]/H[0]**3)/2, 'r:')
plt.loglog(H, H**(2*M-2) * (errQuad[0]/H[0]**(2*M-2))/2, 'g:')

plt.title(f"Errors for M={M}")
plt.legend(['GLL', 'H^2', 'H^3', 'H^{2M-2}'])
plt.xlabel('H'); plt.ylabel('err')

xticks = [2*10**(-2), 4*10**(-2), 6*10**(-2), 8*10**(-2), 10**(-1),␣
↪2*10**(-1)]

plt.xticks(xticks)
plt.grid(which='major', linestyle='--')

Pour M = 2, La convergence numérique est environ de 2.00
Pour M = 3, La convergence numérique est environ de 3.00
Pour M = 4, La convergence numérique est environ de 3.00
Pour M = 5, La convergence numérique est environ de 3.00

15

16

1.5.1 Commentaire

Réponse 4 La courbe d’erreur n’est parallele à la droite avec pente 2𝑀 − 2 que pour 𝑀 = 2.
Pour des valeurs supérieures de 𝑀 , en fait, on obtient des courbes d’erreur avec pente égale à 3.
En genérale, on obtient donc des ordres de convergence inférieurs à ceux obtenus avec la fonction
𝑓 .
Le problème vient du fait que la fonction 𝑔𝐾 n’est pas assez régulière, puisque 𝑔𝐾 ∈ 𝒞0([−1, 1])
mais 𝑔𝐾 ∉ 𝒞1([−1, 1]), car sa dérivée n’est pas continue en 𝑥 = 0. De plus, la dérivée deuxième de
𝑔𝐾 n’est pas continue en 𝑥 = ±𝐾. En fait, afin d’obtenir un ordre de convergence égal à 2𝑀 − 2
(c-à-d l’ordre qu’on s’attend aprés de la théorie), il faudrait que 𝑔𝐾 ∈ 𝒞2𝑀([−1, 1]). Cependant, on
obtient tout de même un ordre compris 3 (sauf que pour 𝑀 = 2) car, mis à part en 𝑥 = 0, ±𝐾, la
fonction 𝑔𝐾 est très régulière.

17

	Assignment 3: Formule de quadrature d'ordres elévés
	Partie 1
	Commentaire

	Partie 2
	Formules de quadrature de Gauss-Legendre-Lobatto.

	Partie 3
	Commentaire

	Partie 4
	Commentaire

	Partie 5
	Commentaire

