[1]:

Sol-Assignment 3 - Intégration et dérivation numérique
May 7, 2025

1 Assignment 3: Formule de quadrature d’ordres elévés

On considére une fonction f : [a,b] — R dans C°([a,b]). On est intéressé & approcher I'intégrale

I(f) = fa ’ f(z) dx en utilisant des formules de quadrature d’ordres elévés.

import matplotlib.pyplot as plt
import numpy as np

from scipy.special import erf, expi
from scipy.integrate import quad

1.1 Partie 1

Dans un premier temps, nous essayons d’approximer l'intégrale de f en exploitant des régles de
quadrature simples (c-a-d non composites), de la forme

b n
I(f) = / fo) do 1, (5) = Y w, flz)

Ces régles ont été construites a partir de l'interpolation polynomiale d’ordre élevé sur des noeuds
équidistribués, c-a-d

ou IL, (f) est 'interpolée de Lagrange de f sur des noeuds équidistribués.

(b—a
Plus précisément, nous considérons : * nceuds : équidistribués dans [a, b], donc z; = a+1 < 1)
n —
* poids : calculés a partir des fonctions de base de Lagrange définies sur les noeuds afin de garantir

. . : b
le degré d’exactitude maximale, donc w; = fa ;(z) dz.
On considere la fonction

1 ; (2) 22 —4
= ——— et Kyolx) = .
1 — 2y + 4y? 2 4

R(x) = 1= my(Ry(z)) avee ry(y)

Approximer I'intégrale de x dans [—3,3] pour n = 27 + 1 noeuds, avec j = 1,2,--,5, et comparer
le résultat avec une estimation précise de l'intégrale (donnée).

Discuter les résultats obtenus. En particulier, est-ce que l'estimation de l'integrale s’améliore
lorsqu’on considére plus de noeuds de quadrature ? Pourquoi 7 (Réponse 1)

[2]: def Lagrange(n):

mnn

Compute Lagrange quadrature nodes and weights on equidistant nodes iny

o[-1,1].

Inputs: [n]
n : Number of nodes.

Outputs: [z, w]
x : Equidistant nodes in [-1,1].

w : Quadrature weights.
nmnn

x = np.linspace(-1, 1, n)
w = np.zeros(n)

for i in range(n):
Define Lagrange basis function
def lagrange_basis(_x):
res = 1
for j in range(n):
if i !'= j:
res *= (_x - x[j1) / (x[i] - x[3D)

return res

Integrate the Lagrange polynomial over [-1,1]
w[il, _ = quad(lagrange_basis, -1, 1)

return x, w

[3]: k2 = lambda x : (x**2 - 4) / 4
k1 = lambda y : 1 / (1 - 2%y + 4xy*x2)
k = lambda x : 1 - k1(k2(x))
a, b =-3, 3

IexactK, _ = quad(k, a, b)
print(f'A precise estimate of the value of the integral is {IexactK:.7f}')

X = np.linspace(a, b, 1000)
y = k(x)

plt.plot(x, y, 'b")

plt.xlabel('x'); plt.ylabel('$£(x)$")
plt.title(r'Plot of $k(x)$"')
plt.x1lim([a,b])

plt.grid()

plt.show()

[4]:

A precise estimate of the value of the integral is 3.1282214

Plot of k(x)
0.8 1
0.6 1
0.4 1
=
=
0.2 1
0.0 1
—0.2
T T T T T
-3 -2 -1 0 1 2
X

n_range = [2*%xk + 1 for k in range(1,6)]

for n in n_range :

B B BB

nodes, weights = Lagrange(n)
nodes = a + (b-a) / 2 * (nodes + 1)
weights *= (b-a) / 2

intQuad = sum(weights * k(nodes))
errQuad = np.abs(intQuad - IexactkK)

print(f"n ={n:3d} - "
f"Approximated integral: {intQuad:2.4f} - "
f"Error: {errQuad:.2e}")

- Approximated integral: 5.0075 - Error: 1.88e+00
Approximated integral: 4.0734 - Error: 9.45e-01
- Approximated integral: 2.0960 - Error: 1.03e+00
17 - Approximated integral: 3.3721 - Error: 2.44e-01

© 01 W
|

= 33 - Approximated integral: -2.8408 - Error: 5.97e+00

1.1.1 Commentaire

Réponse 1 On remarque que 'approximation de l'integrale n’est jamais bonne et devient pire
lorsque le nombre de noeuds n augmente. En genérale, ces grandes erreurs sont liées au fait que le
polynome interpolatoire I1, (f) n’est jamais précis, ce qui dépend du phenomene de Runge pour des
valeurs de n suffisamment grandes. En fait, en dessinant le polynéme interpolatoire de Lagrange, on
pourrait observer la présence d’oscillations de plus en plus évidentes aux éxtremités de ’'intervalle
lorsque n croit.

1.2 Partie 2

Maintenant, on considére des regles de quadrature composites, en subdivisant l’intervalle
d’intégration [a, b] en N sous-intervalles plus petits.

Ecrivez une fonction qui implemente une formule de quadrature composite, étant donnée les noeuds
(dans l'intervalle de reference [—1,1]), les poids, les extrémes de U'intervalle d’integration [a, b] et le
nombre de sous-intervalles N.

La fonction doit avoir la structure suivante:

def QuadratureComposite(nodes, weights, a, b, N, f)
Function that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, wetghts, a, b, N, f]

nodes : quadrature nodes (in [-1,1])

weights : quadrature weights

[a,b] : integration interval

N : number of sub-intervals

f : function to integrate

#

Outputs : [Lh]

Lh : integral of f in [a,b], approzimated with the prescribed composite quadrature

[6]: def QuadratureComposite(nodes, weights, a, b, N, f)
"""Fynction that implements a composite quadrature rule, being given in
input the nodes (in [-1,1]), the weights, the integration interval bounds,
the number of sub-intervals and the integrand function.

Inputs: [nodes, weights, a, b, N, fJ

nodes : quadrature nodes (in [-1,1])
weights : quadrature weights

[a,b] : integration interval

N : number of sub-intervals

f : function to integrate

Outputs : [Lh]

Lh : integral of f in [a,b], approzimated with the prescribed,
~compostite quadrature rule

nimnn

M = len(nodes)
if len(nodes) != len(weights):
raise ValueError(f"Invalid value of M: {M}")

size of the subintervals
=(-a /N

points defining intervals
= np.linspace(a, b, N+1)

[T SN = = <

z = np.zeros (M)

for k in range(N)
Quadrature points in the sub-interval
z = (x[k] + x[k+1])/2 + nodes*(x[k+1] - x[k])/2

local quadrature on the subinterval
Jgk = sum(weights * £(z))

Lh += Jgk
scaling
Lh *= H/2

approzimate integral
return Lh

1.2.1 Formules de quadrature de Gauss-Legendre-Lobatto.

Dans ce test, on prend les nceuds et les poids de quadrature de Gauss-Legendre-Lobatto (GLL),
qui conviennent a l'intégration numerique d’ordre élevé.

La fonction GaussLegendreLobatto ci-dessous retourne les M noeuds (dans l'intervalle de reférence
[—1,1]) et les M poids de quadrature pour les formules de GLL.

Remarque: seulement les cas M = 2,3,4,5 sont considerés.

poids (dans le méme ordre

M noeuds (dans [1,1]) que les noeuds)
2 1,1 1,1
141
3 ~1,0,1 .
V},’V[, 3733
. G 15751
5 5 6666

[6]:

[71:

poids (dans le méme ordre
M noeuds (dans [1,1]) que les noeuds)

—v21 V21 1 1 49 32 49 1
107907457907 10

def GaussLegendreLobatto (M) :
"""Returns the GaussLegendreLobatto (GLL) quadrature nodes and weights for,
~the given value of M.

Inputs s [M]

M : number of quadrature nodes and weights
Outputs

nq : quadrature nodes (in [-1,1])

wq : quadrature weights

if M ==

ng = np.array([-1.0, 1.0])
wq = np.ones (M)
elif M == 3:
nq = np.array([-1.0, 0.0, 1.0])
wq = np.array([1/3, 4/3, 1/3])
elif M == 4:
nq = np.array([-1.0, -np.sqrt(5)/5, np.sqrt(5)/5, 1.0])
wq = np.array([1/6, 5/6, 5/6, 1/6])
elif M == 5:
ng = np.array([-1.0, -np.sqrt(21)/7, 0.0, np.sqrt(21)/7, 1.0])
wq = np.array([1/10, 49/90, 32/45, 49/90, 1/10])
else:
raise ValueError(f"Invalid value of M: {M}")

return ng, wq

1.3 Partie 3

Estimez numériquement le degré d’exactitude des formules de quadrature simples (i.e. pas compos-
ite, N = 1 sous-intervalles) de Gauss-Legendre-Lobatto (GLL) avec M = 4. Est-ce que les résultats
obtenus sont en accord avec la théorie? (Réponse 2)

Checking quadrature fonction
a, b=1, 4

with lambda functions, it is possible to determine a parameter (here d)
at a later moment
monomial = lambda x : x**d

[8]:

recording for which degrees the integral is ezxact (up to epsilon)
exactDegree = -1
epsilon = le-12

M=4
nodes, weights = GaussLegendreLobatto (M)

N=1
for d in range(10)
intQuad = QuadratureComposite(nodes, weights, a, b, N, monomial)
intExact = (4*x*x(d+1) - 1) / (d+1)
print (f'Quadrature on monomial x~{d} : {intQuad:.4f} - {intExact:.4f} =,
~{intQuad-intExact:.6e}"')

if np.abs(intQuad-intExact) < epsilon :
exactDegree = d

print (f'\nGLL composite quadrature with N = {N} and M = {M} is exact up to,
~degree {exactDegreel}')

0 : 3.0000 - 3.0000

1 : 7.5000 - 7.5000

2 : 21.0000 - 21.0000

3 : 63.7500 - 63.7500

4 : 204.6000 - 204.6000
~5 : 682.5000 - 682.5000
6
7
8
9

I
o

.000000e+00
.776357e-15
0.000000e+00
0.000000e+00
2.842171e-14
2.273737e-13
1.041429e+00

Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial
Quadrature on monomial

I
[EY

1 2341.4700 - 2340.4286

: 8210.1000 - 8191.8750 1.822500e+01

1 29313.6240 - 29127.0000 1.866240e+02
106322.7900 - 104857.5000 = 1.465290e+03

GLL composite quadrature with N = 1 and M = 4 is exact up to degree 5

1.3.1 Commentaire

Réponse 1 Le degré d’exactitude des formules de quadrature de Gauss-Legendre-Lobatto (GLL)
est 2M — 3. Dans ce cas, étant M = 4, on s’attend donc un degré d’exactitude égal a 5. Ce résultat
est en effet confirmé par notre test numerique.

1.4 Partie 4

ex
Considerons maintenant la fonction f(z) = e 4+ —.
x

Approximer I(f) = f(z) dz en utilisant les formules de quadrature de GLL composites avec
1/e
M =2,3,4,5 et N = 27 sous-intervalles pour j = 3,4, 5, 6.

Ensuite calculer les erreurs Eé\f L]E(f)=11(f)—1 g[L]LV (f)], ou I, g[L]]Y(f) represente I'approximation

[9]:

de 'integral de f obtenue avec la formule de quadrature de GLL composite, avec IV sous-intervalles
et de degré M.

Dessiner les erreurs en fonction de H sur une échelle logarithmique sur les deux axes. Que peut-on
deduire par rapport aux ordres de convergence ? Sont-ils en accord avec la théorie? Motivez votre
réponse (Réponse 3).

f = lambda x : np.exp(-x**2) + np.exp(x) / x
a, b =1/ np.exp(1l), np.exp(1)

TexactF = (erf(b) - erf(a)) * np.sqrt(ap.pi) / 2 + (expi(b) - expi(a))
print(f'The exact value of the integral of f is {IexactF:.7f}')

np.linspace(a,b,1000)
f(x)

X

y

plt.plot(x, y, 'b")

plt.xlabel('x'); plt.ylabel('$f(x)$")

plt.title(r'Plot of $f(x) = e {-x"2} + \dfrac{e"x}{x}$"')
plt.ylim([0, 1.1*np.max(y)])

plt.xlim([a,b])

plt.grid()

plt.show()

The exact value of the integral of f is 8.7639675

Plot of fix) =™ + &~

fix)

0.5 1.0 1.5 2.0 2.5

[10]: Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2x*k for k in range(4, 9)1)

for M in Mrange :
nodes, weights = GaussLegendreLobatto (M)
errQuad = []

for N in Nrange :
intQuad = QuadratureComposite(nodes, weights, a, b, N, f)
errQuad.append(np.abs(intQuad - IexactF))

H = (b-a)/Nrange
slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-11),
<= np.log(H[0]))

print (f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.
»2f}")

plt.figure(figsize=(6,3))

Pour
Pour
Pour
Pour

plt.loglog(H, errQuad,

lb_ol)

plt.loglog(H, H**(2xM-2) * (errQuad[0]/H[0]**(2+M-2))*2, 'k:')
plt.loglog(H, H#*(2+M-1) * (errQuad[0]/H[0]**(2+M-1)), 'r:')

plt.title(f"Errors for M={M}", fontweight='bold')
plt.legend(['GLL', f'$H {2+M-2}$', f'$H"{2xM-1}$'])
plt.xlabel(r'H'); plt.ylabel('error')

xticks = [4%10%*x(-2), 6x10*%x*x(-2), 8%x10*x(-2), 10*xx(-1),

plt.xticks(xticks)

plt.grid(which='major', linestyle='--"')

M = 2, La convergence numérique est environ de
M = 3, La convergence numérique est environ de
M = 4, La convergence numérique est environ de
M = 5, La convergence numérique est environ de

Errors for M=2

2%x10%x(-1)]

1077 3

error

1077 3 et

10

101

error

error

Errors for M=3

107 3
104€
1U*é
104é
104é
104é

10-1“é

Errors for M=4

101

lD_E _

lﬂ‘E' i

lﬂ—ll} i

10—12 i

10—14 i

11

101

Errors for M=5

1079 ~
10-11

10—13 i

error

10—15 i
10—1?_ et

O

101

1.4.1 Commentaire

Réponse 3 L’ordre de convergence des formules de quadrature de Gauss-Legendre-Lobatto (GLL)
par rapport a H est 2M —2. Dans ces cas, on s’attend donc * une convergence d’ordre 2 par rapport
a H si M = 2; * une convergence d’ordre 4 par rapport & H si M = 3; * une convergence d’ordre
6 par rapport & H si M = 4; * une convergence d’ordre 8 par rapport & H si M = 5;

Nos attentes sont effectivement satisfaites par les résultats numeriques. D’abord, cela peut étre
déduit en regardant les graphiques ci-dessus, oti, pour toute valeur de M, la courbe d’erreur de GLL
est (presque) parallele & la droite d’erreur avec pente (en echelle logarithmique) égal & 2M — 2. De
plus, on peut estimer l'ordre de convergence numerique en calculant la pente des courbes d’erreur
en fonction de H. On obtient les valeurs suivantes: * 2.00 (~ 2) pour M = 2; * 3.97 (~ 4) pour
M =3; *5.96 (~6) pour M =4; *7.79 (~ 8) pour M = 5.

Ces valeurs sont bien en accord avec la théorie.

Remarque: Pour le cas M = 5, on ne consideére que le premiers deuz points pour determiner ’ordre,
car pour des valeurs trop petites de n Uerreur devient approzimativement constante et ~ 10715,

1.5 Partie 5

Répéter la Partie 4, mais en considerant la fonction gy : [—1,1] — R definie comme suit
e® ife<—-K
gr(r) = cpr? + oz if —K<z<K (1)
e * ifx>K
avec K = 0.70, ¢; = —I?;le*K, g = e K (l—i—%) et en prenant N = 2F, k = 3,4,5,6 sous-
intervalles.

12

On a que l'integrale exacte de gy est égale a

1
2 2
I :/ I () d$:2e*K—7+§COK3+bK2.

Quels sont les ordres de convergence numérique obtenus? Sont-ils égaux a ceux obtenus avec la
fonction f7 Pourquoi?(Réponse 4)

[11]: | a,
K
c0 = -(K+1)/K**2 * np.exp(-K)
cl = (1+2/K) * np.exp(-K)

g = lambda x : (np.exp(x)*(x<=-K) +
(cO * x*x*2 + cl * np.abs(x))*(x>-K)*(x<=K) +
np.exp (-x)*(x>K))

TexactG = (2*np.exp(-K) - 2*np.exp(-1) + 2*c0/3*K**3 + cl*Kx*2) / 1 # ezact,
<value of the integral of g
print(f'The exact value of the integral of g is {IexactG:.7f}')

o
]

np.linspace(a,b,1001)
y = g

plt.plot(x, y, 'b')

plt.xlabel(r'x'); plt.ylabel(r'$g(x)$"')
plt.ylim([0, 1.1*np.max(y)])
plt.xlim([a,b])

plt.grid()

plt.show()

The exact value of the integral of g is 0.8020003

13

0.5 1

0.4

glx)

0.2

0.1 +

ﬂ.ﬂ T T T I T T T
-1.00 -075 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

X

[12]: Mrange = np.array([2, 3, 4, 5])
Nrange = np.array([2x*k for k in range(4,9)])

for M in Mrange :

nodes, weights = GaussLegendreLobatto (M)
errQuad = []

for N in Nrange:
intQuad = QuadratureComposite(nodes, weights, a, b, N, g)
errQuad.append(np.abs(intQuad - IexactG))

H = (b-a)/Nrange

slopeQuad = (np.log(errQuad[-1]) - np.log(errQuad[0])) / (np.log(H[-1]1)
- np.log(H[0]))

print (f'Pour M = {M}, La convergence numérique est environ de {slopeQuad:.
<2f}")

plt.figure(figsize=(5,3))

plt.loglog(H, errQuad, 'b-o')

14

plt.loglog(H, H**2 * (errQuad[0]/H[0]**2)*2, 'k:')
plt.loglog(H, H**3 * (errQuad[0]/H[0]**3)/2, 'r:')
plt.loglog(H, H**(2xM-2) * (errQuad[0]/H[0]**(2+M-2))/2, 'g:')

plt.title(f"Errors for M={M}")
plt.legend(['GLL', '$H"2%', '$H"3$', '$H {2M-2}$'1)
plt.xlabel('H'); plt.ylabel('err')

xticks = [2%10%*x(-2), 4*x10**x(-2), 6*x10*%*x(-2), 8*10**x(-2), 10**x(-1),,
2%10%x(-1)]
plt.xticks(xticks)

plt.grid(which='major', linestyle='--"')
Pour M = 2, La convergence numérique est environ de 2.00
Pour M = 3, La convergence numérique est environ de 3.00
Pour M = 4, La convergence numérique est environ de 3.00
Pour M = 5, La convergence numérique est environ de 3.00

Errors for M=2

102

103

104

=1

103

106

15

=1

=1

Errors for M=3

107 3
1072 —
106 —
1077 -
108 —

1077 3

Errors for M=4

10—5 i

10—? i

10—9 i

10—11 i

16

Errors for M=5

107% ~
lﬂ‘E' n
= lﬂ—ll}_
. —e— GLL
10-12 - e T 2
SR R R N I H3
-14 4 y
e e H2M -2
T T T T L |
1071

1.5.1 Commentaire

Réponse 4 La courbe d’erreur n’est parallele a la droite avec pente 2M — 2 que pour M = 2.
Pour des valeurs supérieures de M, en fait, on obtient des courbes d’erreur avec pente égale a 3.
En genérale, on obtient donc des ordres de convergence inférieurs a ceux obtenus avec la fonction

f.

Le probléme vient du fait que la fonction g, n’est pas assez réguliere, puisque g, € C°([—1,1])
mais g ¢ C'([—1,1]), car sa dérivée n’est pas continue en z = 0. De plus, la dérivée deuxieme de
gr Nest pas continue en x = +K. En fait, afin d’obtenir un ordre de convergence égal & 2M — 2
(c-a-d l'ordre qu’on s’attend aprés de la théorie), il faudrait que g, € €*([—1,1]). Cependant, on
obtient tout de méme un ordre compris 3 (sauf que pour M = 2) car, mis a part en z = 0, +K, la
fonction gy est tres réguliere.

17

	Assignment 3: Formule de quadrature d'ordres elévés
	Partie 1
	Commentaire

	Partie 2
	Formules de quadrature de Gauss-Legendre-Lobatto.

	Partie 3
	Commentaire

	Partie 4
	Commentaire

	Partie 5
	Commentaire

